LISHEP 2018

Tests of Lepton Flavour Universality and related anomalies at LHCb

LHCD US

MARÍA DE MAEZTI

Beatriz García Plana

On Behalf of the LHCb Collaboration Universidade de Santiago de Compostela LISHEP 2018, 9-14 September 2018

Today's outline

- Lepton Flavour Universality
- The LHCb experiment

R(K*)
R(K)

Introduction

Rare b→sll decays

Conclusions

- Muonic R(D*)
- Hadronic R(D*)
- R(*J*/ψ)

ConclusionsProspects

For very rare decays see Joao Coelho talk (Friday, 10:00h)

Beatriz García Plana (IGFAE-USC)

Introduction

Beatriz García Plana (IGFAE-USC)

Lepton Flavour Universality

- Observation of violation of LFU would be sign of new physics
- A large class of BSM models contain new interactions that involve third generations of quarks and leptons:
 - Charged Higgs
 - Leptoquarks
 - Z'
 - W'

- Tensions between SM expectacion and experimental results:
 - <u>Charged currents</u>: $b \rightarrow clv$
 - <u>Neutral currents</u>: $b \rightarrow sll$

Searches for LFUV

Beatriz García Plana (IGFAE-USC)

[Int. J. Mod Phys. A30, 1530022 (2015)]

The LHCb detector

• Excellent vertex and momentum resolution

Beatriz García Plana (IGFAE-USC)

[Int. J. Mod Phys. A30, 1530022 (2015)]

The LHCb detector

- Excellent vertex and momentum resolution
- Excellent charged particle identification

[Int. J. Mod Phys. A30, 1530022 (2015)]

The LHCb detector

- Excellent vertex and momentum resolution
- Excellent charged particle identification
- Capability for neutral particle identification

Semileptonic decays

Beatriz García Plana (IGFAE-USC)

Why semitauonic decays?

Tree level decays in the SM, mediated by a W boson

$$R(\mathcal{H}_c) = \frac{\mathcal{B}(\mathcal{H}_b \to \mathcal{H}_c \tau \nu_{\tau})}{\mathcal{B}(\mathcal{H}_b \to \mathcal{H}_c \mu \nu_{\mu})}$$

$$\mathcal{H}_{b} = B^{0}, B^{+}_{(c)}, \Lambda^{0}_{b}...$$
$$\mathcal{H}_{c} = D^{*}, D^{0}, D^{+}, D_{s}, \Lambda^{(*)}_{c}, J/\psi...$$

- Clean predicion from SM
 - Partial cancellation of form factors uncertainties in the ratio
 - **Large rate** of charged current decays BR($B \rightarrow D^* \tau \nu$)~1.2 % in SM
 - Deviation from unity due to different available phase space (τ, μ)

• Sensitivity to NP contributions at tree level

Why semitauonic decays?

Tree level decays in the SM, mediated by a W boson

$$R(\mathcal{H}_c) = \frac{\mathcal{B}(\mathcal{H}_b \to \mathcal{H}_c \tau \nu_{\tau})}{\mathcal{B}(\mathcal{H}_b \to \mathcal{H}_c \mu \nu_{\mu})}$$

$$\mathcal{H}_{b} = B^{0}, B^{+}_{(c)}, \Lambda^{0}_{b}...$$
$$\mathcal{H}_{c} = D^{*}, D^{0}, D^{+}, D_{s}, \Lambda^{(*)}_{c}, J/\psi...$$

- Clean predicion from SM
 - Partial cancellation of form factors uncertainties in the ratio
 - **Large rate** of charged current decays BR($B \rightarrow D^* \tau \nu$)~1.2 % in SM
 - Deviation from unity due to different available phase space (τ, μ)
- Sensitivity to NP contributions at tree level

At LHCb...

- Missing momentum of neutrinos not measured: Missing kinematic constraints
- B momentum unknown: approximations
- \circ Two reconstruction channels for au
 - Muonic mode: $\tau \rightarrow \mu \nu_{\mu} \nu_{\tau}$
 - Hadronic mode: $\tau \rightarrow \mu \pi^{-} \pi^{+} \pi^{-} (\pi^{0}) \nu_{\tau}$

[PRD D88, 072012 (2013)]

 D^*

В

Y (45

tag

п

B

signal

 D^0

B-factories

Before LHCb...

Belle and BaBar studied semitauonic *B* decays at the **B-factories**

- e^+/e^- collisions producing $\Upsilon(4S) \rightarrow B\overline{B}$
- Measurement of the B-signal using fully reconstructed B-tag and a constraint to the Y(4S) mass
- Complementary measurement of R(D) and R(D*) yielded to 3.7σ from SM

J/ψ

[PRD 115, 111803 (2015)]

with $au^- o \mu^- \overline{
u}_\mu
u_ au$

R(D*) muonic at LHCb

 $R(D^*) = \frac{\mathcal{B}(\overline{B}^0 \to D^{*+} \tau^- \overline{\nu}_{\tau})}{\mathcal{B}(\overline{B}^0 \to D^{*+} \mu^- \overline{\nu}_{\mu})}$

First measurement of R(D^{*}) in a hadron collider, using the muonic decay of τ

Features of the analysis...

- Missing kinematic constraints. Rest frame approximation
- B boost along z axis >> boost of decay products in B rest frame

$$(\gamma\beta_z)_B = (\gamma\beta)_{D^*\mu} \Rightarrow (p_z)_B = \frac{m_B}{m(D^*\mu)}(p_z)_{D^*\mu}$$

18 % resolution on *p_B*, good enough to preserve signal and background discrimination

LISHEP 2018

 m^2_{miss}

 \overline{B}^0

 $\uparrow * +$

R(D*) muonic at LHCb

[LHCb-PAPER-2015-025]

[PRD 115, 111803 (2015)]

R(D*) muonic at LHCb

Beatriz García Plana (IGFAE-USC)

[PRD 115, 111803 (2015)] **LHCD**

R(D*) muonic at LHCb

Systematics:

Model uncertainties	Absolute size $(\times 10^{-2})$
Simulated sample size	2.0
Misidentified μ template shape	1.6
$\overline{B}{}^0 \to D^{*+}(\tau^-/\mu^-)\overline{\nu}$ form factors	0.6
$\overline{B} \to D^{*+}H_c(\to \mu\nu X')X$ shape corrections	0.5
$\mathcal{B}(\overline{B} \to D^{**}\tau^-\overline{\nu}_\tau)/\mathcal{B}(\overline{B} \to D^{**}\mu^-\overline{\nu}_\mu)$	0.5
$\overline{B} \to D^{**}(\to D^*\pi\pi)\mu\nu$ shape corrections	0.4
Corrections to simulation	0.4
Combinatorial background shape	0.3
$\overline{B} \to D^{**}(\to D^{*+}\pi)\mu^-\overline{\nu}_\mu$ form factors	0.3
$\overline{B} \to D^{*+}(D_s \to \tau \nu) X$ fraction	0.1
Total model uncertainty	2.8
Normalization uncertainties	Absolute size $(\times 10^{-2})$
Simulated sample size	0.6
Hardware trigger efficiency	0.6
Particle identification efficiencies	0.3
Form-factors	0.2
$\mathcal{B}(\tau^- \to \mu^- \overline{\nu}_\mu \nu_\tau)$	< 0.1
Total normalization uncertainty	0.9
Total systematic uncertainty	3.0

[PRD 97, 072013 (2018)] [PRL 120,171802 (2018)]

R(D*) hadronic at LHCb

- First measurement of R(D*) using the hadronic τ decay with $\tau \rightarrow \pi^{-}\pi^{+}\pi^{-}(\pi^{0})\nu_{\tau}$
- What is measured:

$$R_{had}(D^{*-}) = \frac{\mathcal{B}(B^0 \to D^{*-}\tau^+\nu_{\mu})}{\mathcal{B}(B^0 \to D^{*-}\pi^+\pi^-\pi^+)} = \frac{N_{sig}}{N_{norm}} \times \frac{\epsilon_{norm}}{\epsilon_{sig}} \times \frac{1}{\mathcal{B}(\tau^+ \to \pi^+\pi^-\pi^+(\pi^0)\overline{\nu}_{\tau})}$$
Overlapping signal decay mode
$$Approximations are done to reconstruct the B and \tau$$
momentum. Good precision obtained
Signal and normalization same visible state: $D^*\pi^*\pi^*\pi^*$
Most of the theoretical and experimental uncertainties
on cancel out in the ratio
 $R(D^{*-}) = R_{had}(D^{*-}) \times \frac{\mathcal{B}(B^0 \to D^{*-}\pi^+\pi^-\pi^+)}{\mathcal{B}(B^0 \to D^{*-}\mu^+\nu_{\mu})}$
[4.0 % precision]
[2.2 % precision]
[2.2 % precision]

[PRD 97, 072013 (2018)]

R(D*) hadronic at LHCb

Beatriz García Plana (IGFAE-USC)

[PRD 97, 072013 (2018)] [PRL 120,171802 (2018)]

R(D*) hadronic at LHCb

- Most important background after the inversion cut comes from $B \rightarrow D^{*} D_{s}^{+} X$
- Multivariate Analysis: 18 variables combined in a **BDT**:
 - 3π variables
 - $D^*-3\pi$ dynamics
 - Neutral isolation variables

BDT used as variable in the fit to extract signal yield

Beatriz García Plana (IGFAE-USC)

Beatriz García Plana (IGFAE-USC)

 $= 0.291 \pm 0.019(stat) \pm 0.026(syst) \pm 0.013(ext)$

LISHEP 2018

binned fit to data

 $N(B^0 \rightarrow D^* \pi^+ \pi^- \pi^+)$ unbinned

likelihood fit to $M(D^{*}\pi^{-}\pi^{+}\pi^{-})$

 $N(B^0 \rightarrow D^* \tau^+ \nu_{\tau})$ three dimensional

<u>Variables</u>: τ decay time, q², BDT output

15

R(D*) hadronic at LHCb

[PRD 97, 072013 (2018)]

[PRD 97, 072013 (2018)] [PRL 120,171802 (2018)]

R(D*) hadronic at LHCb

System	atics:	
ey beenn		

Contribution	Value in $\%$
$\mathcal{B}(\tau^+ \to 3\pi\overline{\nu}_{\tau})/\mathcal{B}(\tau^+ \to 3\pi(\pi^0)\overline{\nu}_{\tau})$	0.7
Form factors (template shapes)	0.7
au polarization effects	0.4
Other τ decays	1.0
$B o D^{**} \tau^+ \nu_{\tau}$	2.3
$B_s^0 \to D_s^{**} \tau^+ \nu_\tau$ feed-down	1.5
$D_s^+ \to 3\pi X$ decay model	2.5
D_s^+, D^0 and D^+ template shape	2.9
$B \to D^{*-}D^+_s(X)$ and $B \to D^{*-}D^0(X)$ decay model	2.6
$D^{*-}3\pi X$ from B decays	2.8
Combinatorial background (shape + normalization)	0.7
Bias due to empty bins in templates	1.3
Size of simulation samples	4.1
Trigger acceptance	1.2
Trigger efficiency	1.0
Online selection	2.0
Offline selection	2.0
Charged-isolation algorithm	1.0
Normalization channel	1.0
Particle identification	1.3
Signal efficiencies (size of simulation samples)	1.7
Normalization channel efficiency (size of simulation samples)	1.6
Normalization channel efficiency (modeling of $B^0 \to D^{*-}3\pi$)	2.0
Form factors (efficiency)	1.0
Total uncertainty	9.1

Beatriz García Plana (IGFAE-USC)

R(D*)

Beatriz García Plana (IGFAE-USC) **LISHEP 2018**

R(D*) global picture

[HFLAV 2018]

 \circ WA combination of R(D) and R(D*) is in tension with SM at the **3.8** σ level

18

[PRL 120 (2018) 121801]

$R(J/\psi)$ in LHCb

Systematics:

Source of uncertainty	Size (×10 ⁻²)
Finite simulation size	8.0
$B_c^+ \rightarrow J/\psi$ form factors	12.1
$B_c^+ \rightarrow \psi(2S)$ form factors	3.2
Fit bias correction	5.4
Z binning strategy	5.6
Mis-ID background strategy	5.6
combinatorial background cocktail	4.5
combinatorial J/ψ background scaling	0.9
$B_c^+ \rightarrow J/\psi H_c X$ contribution	3.6
$\psi(2S)$ and χ_c feed-down	0.9
Weighting of simulation samples	1.6
Efficiency ratio	0.6
${\cal B}(au^+ o \mu^+ u_\mu ar u_ au)$	0.2
Systematic uncertainty	17.7
Statistical uncertainty	17.3

Rare b→sll decays

Beatriz García Plana (IGFAE-USC)

Rare $b \rightarrow sll$ decays

Flavour Changing Neutral Current transitions. Proceed via loop diagrams. Within a given range of the dilepton mass squared, q²:

$$R_X[q_{min}^2, q_{max}^2] = \frac{\int_{q_{min}^2}^{q_{max}^2} dq^2 \frac{d\Gamma(B \to X\mu^+\mu^-)}{dq^2}}{\int_{q_{min}^2}^{q_{max}^2} dq^2 \frac{d\Gamma(B \to Xe^+e^-)}{dq^2}} \quad \text{with} \quad X = K, K^*, \phi.$$

• SM expectation $R_x = 1$, neglecting lepton masses

Partial cancellation of hadronic uncertainties in theoretical predictions

• Suppressed in SM: more sensitive to NP

At LHCb...

- Extremely challenging due to significant differentes in the way μ and *e* interact with the detector: Bremsstrahlung, trigger
- LHCb published measurements:
 - $\mathbf{R}_{\mathbf{K}}$

Beatriz García Plana (IGFAE-USC)

<u>[]HEP 08 (2017) 55]</u>

LHCb measured **R(K*)** for $q^2 \in [0.045, 1.1]$ and [1.1, 6.0] GeV²/c⁴, with $K^{*0} \rightarrow K^+ \pi^-$ Double ratio to reduce systematics:

$$R(K^*) = \frac{\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi(\to (\mu^+ \mu^-)))} / \frac{\mathcal{B}(B^0 \to K^{*0} e^+ e^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi(\to (e^+ e^-)))}$$

Bremsstrahlung effects: two reconstruction strategies

- Downstream of the magnet: Photon energy is likely to be in the same calorimeter cell as the electron
- Upstream of the magnet: Photon energy is likely to be in different calorimeter cell than electron

[<u>|HEP 08 (2017) 55]</u>

Bremsstrahlung effects

- Recovery procedure → improvement momentum resolution, B mass resolution
- Worse separation of partially reconstructed backgrounds
- Background from the J/ψ and $\psi(2S)$ contaminate the signal region

[Run 1 data]

• Electron sample is separated in **3 Bremsstrahlung categories** $(0\gamma, 1\gamma, \ge 2\gamma)$

• **3 types of trigger**: electrons (L0E), hadrons (L0H) and signal independence (L0I)

Maximize the electron sample size

Beatriz García Plana (IGFAE-USC)

[JHEP 08 (2017) 55]

[Run 1 data]

Normalization channel

Result: Fit to *B* mass distribution in lower and central q^2 bin **Simultaneous fit** $M(K^+\pi \ l^+l^-)$ to the J/ψ and non-resonant channels

Low q^2 bin

Central q^2 bin

Beatriz García Plana (USC)

LHCb: JHEP 08 (2017) 55 Babar: PRD 86 (2012) 032012 Belle: PRL 103 (2009) 171801

- LHCb result most precise measurement to date
- Statistically limited by the electron sample size

Beatriz García Plana (IGFAE-USC)

114

Systematics:

	$\Delta R_{K^{*0}}/R_{K^{*0}}$ [%]					
	low- q^2			central- q^2		
Trigger category	LOE	L0H	L0I	LOE	L0H	LOI
Corrections to simulation	2.5	4.8	3.9	2.2	4.2	3.4
Trigger	0.1	1.2	0.1	0.2	0.8	0.2
PID	0.2	0.4	0.3	0.2	1.0	0.5
Kinematic selection	2.1	2.1	2.1	2.1	2.1	2.1
Residual background	_	—	—	5.0	5.0	5.0
Mass fits	1.4	2.1	2.5	2.0	0.9	1.0
Bin migration	1.0	1.0	1.0	1.6	1.6	1.6
$r_{J/\psi}$ ratio	1.6	1.4	1.7	0.7	2.1	0.7
Total	4.0	6.1	5.5	6.4	7.5	6.7

4

U

LHCb: PRL 113, 151601 (2014) BaBar: PRD 86, 032012 Belle: PRL 103, 171801

- In 2014, LHCb measured **R(K)** for $q^2 \in [1, 6]$ GeV²/c⁴
- Double ratio of rare J/ψ channel used to reduce the systematic uncertainties
- Low efficiency for electrons: Bremsstrahlung effects
- Signal extracted via invariant mass fits
- Dominant source of systematic uncertainty are due to the parametrization $B^+ \rightarrow J/\psi (\rightarrow e^+e^-)K^+$ mass distribution and trigger efficencies. Both contribute ~3% to the value of R(K)

Beatriz García Plana (IGFAE-USC)

Conclusions

Beatriz García Plana (IGFAE-USC)

Conclusions

LFUV road to new physics!

Semileptonic B decays hint anomalies with respect to the SM at both tree and loop levels

- All measurements presented were performed using Run 1 data and are dominated by statistical uncertainties
- ~9fb⁻¹ expected at the end of Run 2
- <u>Run 2 LHCb data:</u> Exciting program ahead! Updates and new analysis: Statistical and systematic uncertainties will be reduced

Ongoing and planned

 $R(D^{0}), R(D^{+}), R(D_{s}), R(\Lambda^{(*)}_{c})...$

 $R(\psi), R(K_{s}), R(\Lambda)...$

Conclusions

LFUV road to new physics!

Semileptonic B decays hint anomalies with respect to the SM at both tree and loop levels

- All measurements presented were performed using Run 1 data and are dominated by statistical uncertainties
- ~9fb⁻¹ expected at the end of Run 2
- <u>Run 2 LHCb data</u>: Exciting program ahead! Updates and new analysis: Statistical and systematic uncertainties will be reduced

Ongoing and planned

 $R(D^0), R(D^+), R(D_s), R(\Lambda^{(*)}_{c})...$

LISHEP 2018

 $R(\psi), R(K_{s}), R(\Lambda)...$

Thank you for your attention

Any question?

Beatriz García Plana (IGFAE-USC)

Backup slides

Beatriz García Plana (IGFAE-USC)

Angular analysis of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

- $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ exhibits rich angular structure
- Optimized angular observable P'₅
 - The differential decay width can be parametrised in terms of this observable

0

ATLAS data

SM from DHMV SM from ASZB

15

 $q^2 \,[{\rm GeV}^2/c^4]$

CMS data

• Aim to reduce dependence on hadronic form factors

LHCb data

10

Belle data

0.5

-0.5

• Global picture at q^2 bins [4,6] and [6,8] GeV²/c⁴ is in tension with the SM at the level of 2.8 σ and 3 σ

<u>LHCb: JHEP02 (2016) 104</u> <u>Belle: PRL 118 (2017) 111801</u> <u>ATLAS: arXiv:1805.04000</u> <u>CMS: CMS-PAS-BPH-15-008</u>

LISHEP 2018

LHCb ГНСр